

- AL-Hussain AL-Shaikh: 2017710212300
- Ahmed Kanbari: 2016710212070
- Marwan Al-Arashi: 2017710212178

Group: 31 Supervisor: Dr. Okan Unal

SPEED REDUCTION GEARBOX

Content

- Abstract
- Introduction
- Calculations
- Technical Drawings
- Analysis
- Manufacturing
- Conclusion
- References

SPEED REDUCTION

Abstract

The aim of this project is to set out the basic design for an industrial gearbox with its calculation to avoid any fatigue in the gears and to let the gearbox to achieve its desired work properly.

In this project we are going to design the gearbox using the cad software Solidworks, we are planning first to make calculations then draw gears using Solidworks, and after that making some analysis to the gears. Finally, we are going to assembly the parts and simulate the gearbox to be able to work properly.

Introduction

Gear reduction boxes are used in many factories and industries, their goal is to reduce speed and increase torque. You will find gear boxes in many machines around us such as (i.e.: electric motor, diesel or steam, cars and engines, etc.) and the driven equipment: conveyors, mills, paper machines, elevators, screws, agitators, etc.).

An industrial gearbox is defined as a machine for most drives requiring a reliable life and factor of safety, which used for specific duties demands high power and torque, or for applications where speed is more required such as automobile and aerospace applications. And Gear Reducers are a system of gears used in different ways of power and motion transmission.

Reducers are a system of gears used in different power and motion transmission applications. Gears Reducers are generally classified according to the type of teeth they have such as:

- 1. Spur gear reducers 4. Bevel gear reducers
- 2. Helical gear reducers 5. Planetary gear reducers
- 3. Worm gear reducers 6. Parallel gear reducers

Some reduction gearboxes are as simple as a gear train between the motor and the machinery, but regardless of complexity the decrease is possible because the output gear has more teeth than the input gear allowing the output gear to rotate more slowly, reducing the speed, and increasing torque. The speed of the input can be controlled with a speed reducer so that the output is the correct speed and torque.

Finding the right speed reducer for your application is essential to ensure performance. We offer a free checklist, the Speed Reducer Buying Checklist, that will guide you through the process of matching your application requirements with the information needed to allow your supplier to turn it into real it

Calculations

Selected engine is Mazda Renesas rotary (Wankel engine) Input Power: P input 177 kW or 238hp Input shaft speed: ng = up to 4500 rev / min (we choose 2100 rpm) for example

Output shaft speed: (700rpm,950rpm,1750rpm) it is varying depends on the desired speed, but we are going to design different gear ratio for different speeds

Number of stages: 1 for each speed

Gear type: Spur gear wheel

Gear type Selected information:

Gear material: 16MnCr5 (Cementation Steel

) Efficiency of spur gears: $\eta 12 = 0.97$

Efficiency of rolling bearings: $\eta y = 0.97$ Since

this is informed.

Total yield: total = η 12. y = (0.97). (0.97) = 0.941

Calculation of gear numbers:

Because we want to design a gearbox for a vehicle for a different speed, we are going to design up to 7 gears, where each two mesh gears are going to produce the desired-out speed depends on its calculated gear ratio. But we can suppose different speeds to design different gear ratios gear ratio I Sum: It is calculated by dividing the input shaft revolution by the output shaft revolution.

It was calculated as Isum = nin / nout = 2100/700 = 3

Isum = nin / nout = 2100 / 950 = 2.

22 Isum = nin / nout = 2100/1750 =

1.2

Since it is a single stage reducer, Isum = (3, 2.22, 1.2)

) For gears the tooth count is 10-40 turning.

For the first output speed which is 700

rpm z1 = 12 tooth is selected

z2 = 36 tooth is selected (z2=z1*lsum)

For the first output speed which is 950

rpm z3 = 18tooth is selected

z4 = 40 tooth is selected (z4=z3*lsum)

For the first output speed which is 1750 rpm

z5 = 25 tooth is selected

z6 = 30 tooth is selected(z6=z5*lsum)

Power calculation

The input power, P, not as = 177kW = 177000 W.

P Output, which is the output power; It is found by the collision of the input power and the total efficiency (total).

Pout = Pinput* total efficiency = 177000* 0.941 = 166557W.

Total reducer power loss is found as PInput - POut = 177000-166557W= 10443 W.

Calculation of rotation moment

To calculate the turning moments, we first need to find the rotation of the shafts.

For first desired speed 700 rpm

nin = n1 =2100 rpm

nout = n2 = 700 rpm (n2 = n1 / 112)

The input moment Md1; It is found by dividing the input power by its speed. In input power kW, rotation speed / minute, formulas are as follows.

For the first desired output speed 700 rpm:

Md1 = 9550*P input / n1 = 9550* 1/2100 = 4.548Nm = 4548Nmm.

Md2 = 9550* P input* ηtotal / n2 = 9550*1*0.941 / 700 = 12.838 Nm = 12838 Nmm

For second desired speed 950 rpm

Nin = n1 =2100 rpm

Nout = $n^2 = 900 \text{ rpm} (n^2 = n^1 / 1^2)$

Md1 = 9550*P input / n1 = 9550* 1/2100 = 4.548Nm = 4548Nmm.

Md2 = 9550* P input* η total / n2 = 9550*1*0.941 / 950 = 9.4595 Nm = 94595.2 Nmm

For third desired speed 1750 rpm

Md1 = 9550*P input / n1 = 9550* 1/2100 = 4.548Nm = 4548Nmm.

Md2 = 9550* P input* ntotal / n2 = 9550*1*0.941 / 1750 = 5.1352 Nm = 5135.2 Nm In the dimensioning of shafts and gears, these moments are multiplied by the S coefficient to find the maximum possible moments.

Safety impact factor S = 1.25 was chosen.

Calculation of the module

When we know the m and z values of a gear wheel, all other dimensions are calculated. Selections should be made in certain value ranges to find m (module).

1. Number of widths

The width number should be chosen according to the module (m), diameter (d). In this calculation, the selection was made according to the module. For precision machined gears bearing on both sides, $\Psi m = 18$ -20.

 Ψ m = 20 was chosen.

2. Form factor (Kf)

According to DIN 867, if z = 15 for $a = 20^{\circ}$, the Kf value is found by looking at the table. Kf = 3.23 was found.

3.Grip ratio (E)

The grip ratio should be chosen between 1.1 - 1.4. If the system is to work more safely, it should be chosen small. $\epsilon = 1,2$ was chosen 16MnCr5 was chosen as gear material. The values of this material are: $\sigma k = 880 \text{ N} / \text{mm}^2$ (tensile strength) HB = 1800 N / mm² (Brinel hardness value) E = 2.1. 10⁵ N / mm² (Elasticity coefficient) $\sigma d = 484 \text{ N} / \text{mm}^2$ (Fully variable strength value) Kç = 1.6 (Notch factor at the root of the tooth) $\sigma em = \sigma d / \text{K} c = 302,5 \text{ N} / \text{mm}^2$ $\rho em = (0.2 - 0.4)$. Hb = 0.35. 1800 = 630 N / mm² Thus, all the values required to calculate the modules according to tooth root strength and tooth surface crush were obtained.

For first speed 700 rpm

Module according to tooth root strength $m = 3\sqrt{(2^{*}S^{*}Md1^{*}Kf)/(z1^{*}\Psi m^{*}\epsilon^{*}\sigma em))} =$ $3\sqrt{(2^{*}1.25^{*}4548^{*}3.23)/(12^{*}20^{*}1.2^{*}302.5))} = 0.7498mm$

Module according to tooth surface crush

 $m = 3\sqrt{(2^*S^*Md1^*E^*(\mathbf{112}+1/\mathbf{112}))} / (\mathbf{z1}^2 * \Psi \mathbf{m}^* \mathcal{E}^* pem^2)$ $3\sqrt{(2^*1,25^*4548^*2,1^*10^5(3+1/3))} / (122^*20^*1,2^*630^2) = 1.797 mm$

=

for second speed 950rpm Module according to tooth root strength $m = 3\sqrt{(2^*S^*Md1^*Kf)/(z3^*\Psi m^*\epsilon^*\sigma em))} =$ $3\sqrt{(2^*1.25^*4548^*3.23)/(18^*20^*1.2^*302.5))} = 0.655$

Module according to tooth surface crush

 $m = 3\sqrt{(2^*S^*Md1^*E^*(i12+1/i12))} / (z3^2 *\Psi m^*\epsilon^*pem^2)$ $3\sqrt{(2^*1,25^*4548^*2,1^*10^5(2.22+1/2.22))} / (182^*20^*1,2^*630^2) = 1.273$

for third speed 1750rpm

Module according to tooth root strength $m = 3\sqrt{(2^*S^*Md1^*Kf)/(z5^*\Psi m^*\epsilon^*\sigma em))} =$ $3\sqrt{(2^*1.25^*4548^*3.23)/(25^*20^*1.2^*302.5))} = 0.587$

Module according to tooth surface crush

m = $3\sqrt{2*S*Md1*E*(i12+1/i12)} / (z5^2 *\Psi m*E*pem^2) = 3\sqrt{2*1,25*4548*2,1*10^5(1.0344+1/1.0344)} / (252*20*1,2*630^2) = 0.9293$ For more suitable design option we choose module 11 for all gears.

Control for root fracture due to bending

for first speed 700 rpm

The environmental force is found by the relation

Fout = 2.S.Md1 / d1. Here d1 is the diameter of the rolling circle and is found by the relation d1 = m^*z1 .

Fout = 2* 1.25* 4548 / (11*12) = 86.14 N

It should be $\sigma emax = Kf * Fout / (m^* \epsilon^* b) \le \sigma em.$ $Kf = 3.23 b = \Psi m * m = 20^* 11 = 220.$ $\Sigma emax = 3.23 * 86.14 / (11^* 1.2^* 220) = 0.0958 N/mm2$ Since $\sigma emax = 0.0958 = 0.0958 \le 302.5 N / mm^2$, it IS SAFE

for second speed 950 rpm

The environmental force is found by the relation

Fout = 2.S.Md1 / d1. Here d1 is the diameter of the rolling circle and is found by the relation d1 = m^*z1 .

. . .

Fout = 2* 1.25* 4548 / (11*18) = 57.42 N

It should be $\sigma emax = Kf * Fout / (m^* \epsilon^* b) \le \sigma em.$ $Kf = 3.23 b = \Psi m * m = 20^* 11 = 220.$ $\epsilon emax = 3.23 * 57.42 / (11^* 1.2^* 220) = 0.0639 N/mm2$ Since $\sigma emax = 0.0639 = 0.0639 \le 302.5 N / mm^2$, it IS SAFE

for third speed 1750 rpm

The environmental force is found by the relation Fout = 2.5.Md1 / d1. Here d1 is the diameter of the rolling circle and is found by the relation d1 = m*z1. Fout = 2* 1.25* 4548 / (11*25) = 41.34 N

It should be $\sigma emax = Kf * Fout / (m^* \epsilon^* b) \le \sigma em.$ $Kf = 3.23 b = \Psi m * m = 20^* 11 = 220.$ $\epsilon emax = 3.23 * 41.34 / (11^* 1.2^* 220) = 0.046 N/mm2$ Since $\sigma emax = 0.046 = 0.046 \le 302.5 N / mm^2$, it IS SAFE

Control for surface crush:

Hertz relation is used to control for surface crush. pmax = Km* Ka* K ϵ * \sqrt{Fout} *(i12 + 1/i12)!(b*d1) \leq pem. Here, the material coefficient is found from the relation Km = $\sqrt{35}$. The rolling point coefficient is found from the relation Ka = $\sqrt{1}/(sina.cosa. a)$ and a =20 ° is chosen. The thread length coefficient is found from K ϵ = $1/\sqrt{\epsilon}$. Where ϵ = 1,2 has been chosen. As a result of these equations; Km = 270 Ka = 1.76 Ka = 1.76 K\epsilon = 0.91 alınır. pmax = 270 *1.76 * 0.91 * $\sqrt{86.14}$ * ((3+1)/3)/220*132= 27.195 \leq 630 N/mm² This value is for safety

Technical Drawing

We are going to show you some of our Solidworks drawing parts

14

Analysis by Solidworks

Material Properties

Model Reference	Prop	Properties	
	Model type: Default failure criterion: Yield strength: Tensile strength: Elastic modulus: Poisson's ratio: Mass density:	2.1e+011 N/m ² 0.28 7800 kg/m ³ 7.9e+010 N/m ²	SolidBody 1(Cut- Extrude <u>3)(</u> Gear 6)

Loads and Fixtures

Fixture name	Fixture Image		Fixture Details	
Fixed-1			Entities: 1 fac Type: Fixed	
lesultant Forces				
Components	X	Y	Z	Resultant
Reaction force(N) -0.943675	-1.08597	0.016778	1.4388
Reaction Moment(0	0	0	0

Load name	Load Image	Load Deta	ails
Torque-1			

...

Mesh information

Mesh type	Solid Mesh
Mesher Used:	Standard mesh
Automatic Transition:	Off
Include Mesh Auto Loops:	Off
Jacobian points	4 Points
Element Size	28.3855 mm
Tolerance	1.41928 mm
Mesh Quality Plot	High

Mesh information - Details

Total Nodes	24586
Total Elements	15612
Maximum Aspect Ratio	14.653
% of elements with Aspect Ratio < 3	82.9
% of elements with Aspect Ratio > 10	0.711
% of distorted <u>elements(</u> Jacobian)	0
Time to complete mesh(hh:mm;ss):	00:00:03
Computer name:	

...

Resultant Forces

Reaction forces

Selection set	Units	Sum X	Sum Y	Sum Z	Resultant
Entire Model	N	-0.943675	-1.08597	0.016778	1.4388

Reaction Moments

Selection set	Units	Sum X	Sum Y	Sum Z	Resultant
Entire Model	Nam	0	0	0	0

Study Results

Name	Туре	Min	Max
Displacement1	URES: Resultant Displacement	0.000e+000mm Node: 155	5.337e-004mm Node: 1567

. . .

Material Properties

Model Reference	Components	erties
4	SolidBody 1(Cut- Extrude <u>3)(</u> Gear 6-3)	1.7131 (16MnCr5) Linear Elastic Isotropic Max von Mises Stress 5.90594e+008 N/m ² 8e+008 N/m ² 2.1e+011 N/m ² 0.28 7800 kg/m ³ 7.9e+010 N/m ² 1.1e-005 /Kelvin

Loads and Fixtures

Fixture name	Fixture Image		Fixture Details	
Fixed-1			Entities: 2 face Type: Fixed	e(s) Geometry
esultant Forces				
Components	X	Y	Z	Resultant
Reaction force(N) -8.03771	-4843.9	-0.0557809	4843.91
Reaction Moment(0	0	0	0

Load name	Load Image	Load Details	
Torque-1		Entities: 2 face(s) Reference: Face< 1 Type: Apply to Value: 2000 N.0	> rque

...

Resultant Forces

Reaction forces

Selection set	Units	Sum X	Sum Y	Sum Z	Resultant
Entire Model	N	-8.03771	-4843.9	-0.0557809	4843.91

Reaction Moments

Selection set	Units	Sum X	Sum Y	Sum Z	Resultant
Entire Model	850	0	0	0	0

Study Results

...

...

Mesh information

Mesh type	Solid Mesh
Mesher Used:	Standard mesh
Automatic Transition:	Off
Include Mesh Auto Loops:	Off
Jacobian points	4 Points
Element Size	33.3264 mm
Tolerance	1.66632 mm
Mesh Quality Plot	High

Analysis by Ansys

Gears are toothed mechanical components that are widely used innumerous industrial applications from heavy machinery to precision instruments to transmit power or motion. In a gear set, regardless of which one is driving the other, the smaller gear is called the pinion, and the larger gear is called the gear or wheel. Gear failure is an alarming and undesirable event that may happen because of an excessive applied load, invade quate lubrication, inaccurate manufacturing, or a bad install- lotion procedure. Gearfailure may induce higher unaccepted able levels of soundand vibration. It may also decrease the efficiency of transmission, alter the normal operating conditions, and seriously disturb the production rate. In more severe cases, it can also provoke costly consequences that jeopardize machines' safety and even threaten human lives. Because of more competitive industry conditions, ma- chines are required to work under increasingly extreme operating environments for longer cycles and higher loads. Consequent, the gear teeth become more susceptible to surface.

...

Project

First Saved	Saturday, January 23, 2021
Last Saved	Saturday, January 23, 2021
Product Version	19.2 Release
Save Project Before Solution	No
Save Project After Solution	No

- <u>Units</u>
- Model (A4)
 - 0
- Geometry Part 1 Materials
 - 0
 - <u>16mncr5</u>
 - Structural Steel Coordinate Systems o 0
 - Mesh Static Structural (A5) 0

. . .

- Analysis Settings
- Loads
- Solution (A6)
 - <u>Solution Information</u>
 - Results

Material Data

o <u>16mncr5</u>

Report Not Finalized

Not all objects described below are in a finalized state. As a result, data may be incomplete, obsolete or in error. <u>View first state problem</u>. To finalize this report, edit objects as needed and solve the analyses.

Units

TABLE 1

Unit System	Metric (mm, kg, N, s, mV, mA) Degrees rad/s Celsius
Angle	Degrees
Rotational Velocity	rad/s
Temperature	Celsius

...

Model (A4)

Geometry

TABLE 2 Model (A4) > Geometry

Object Name	Name Geometry	
State	Fully Defined	
Definition		
Source	C:\Users\LENOVO\Desktop\Gear 6.x_t	
Туре	Parasolid	
Length Unit	Meters	
Element Control	Program Controlled	
Display Style	Body Color	
Bounding Box		
Length X	418, mm	

TABLE 3 Model (A4) > Geometry > Parts

Object Name	Part 1	
State	Meshed	
Graphics Properties		
Visible	Yes	
Transparency	1	
Definition		
Suppressed	No	
Stiffness Behavior	Flexible	
Coordinate System	Default Coordinate System	
Reference Temperature	By Environment	
Behavior	None	
Material		
Assignment	16mncr5	

...

Length Y	418, mm
Length Z	192, mm
	perties
•	
Volume	1,944e+007 mm ³
Mass	151,63 kg
Scale Factor Value	1,
Sta	tistics
Bodies	1
Active Bodies	1
Nodes	213003
Elements	133662
Mesh Metric	None
Update	Options
Assign Default Material	No
Basic Geor	netry Options
Solid Bodies	Yes
Surface Bodies	Yes
Line Bodies	No
Parameters	Independent
Parameter Key	ANS;DS
Attributes	No
Named Selections	No
Material Properties	No
Advanced Ge	ometry Options
Use Associativity	Yes
Coordinate Systems	No
Reader Mode Saves Updated File	No
Use Instances	Yes
Smart CAD Update	Yes
Compare Parts On Update	No
Analysis Type	3-D
Mixed Import Resolution	None
Clean Bodies On Import	No
Stitch Surfaces On Import	No
Decompose Disjoint Geometry	Yes
Enclosure and Symmetry Processing	Yes

...

Nonlinear Effects	Yes		
Thermal Strain Effects Yes			
Bounding Box			
Length X	418, mm		
Length Y	418, mm		
Length Z	192, mm		
Properties			
Volume	1,944e+007 mm ³		
Mass	151,63 kg		
Centroid X	-2,0208e-004 mm		
Centroid Y	2,2038e-005 mm		
Centroid Z	96,279 mm		
Moment of Inertia Ip1	2,0238e+006 kg·mm ²		
Moment of Inertia Ip2	2,0238e+006 kg·mm ²		
Moment of Inertia Ip3	3,1203e+006 kg·mm ²		
Statistics			
Nodes	213003		
Elements	133662		
Mesh Metric	None		

FIGURE 1 Model (A4) > Geometry > Part 1 > Figure

...

Coordinate Systems

TABLE 4
Model (A4) > Coordinate Systems > Coordinate System

Object Name	Global Coordinate System	
State	e Fully Defined	
Definition		
Туре	Cartesian	
Coordinate System ID	0,	
Origin		
Origin X	0, mm	
Origin Y	0, mm	
Origin Z	0, mm	
Directional Vectors		

•		
•	•	

X Axis Data	[1,0,0,]
Y Axis Data	[0, 1, 0,]
Z Axis Data	[0,0,1,]

TABLE 5 Model (A4) > Mesh Object Name Mesh State Solved Display Display Style Use Geometry Setting Defaults Physics Preference Mechanical Element Order Program Controlled Element Size Default Sizing Use Adaptive Sizing Yes Resolution 7 Mesh Defeaturing Yes Defeature Size Default

Deleature Oize	Delault	
Transition	Fast	
Span Angle Center	Coarse	
Initial Size Seed	Assembly	
Bounding Box Diagonal	621,54 mm	
Average Surface Area	4632,1 mm ²	
Minimum Edge Length	4, mm	
Quality		
Check Mesh Quality	Yes, Errors	
Error Limits	Standard Mechanical	
Target Quality	Default (0.050000)	
Smoothing	High	
Mesh Metric	None	
Inflation		
Use Automatic Inflation	None	
Inflation Option	Smooth Transition	
Transition Ratio	0,272	
Maximum Layers	5	
Growth Rate	1,2	
Inflation Algorithm	Pre	
View Advanced Options	No	
Advanced		
Number of CPUs for Parallel Part Meshing	Program Controlled	
Straight Sided Elements	No	
Number of Retries	Default (4)	

...

Rigid Body Behavior	Dimensionally Reduced	
Triangle Surface Mesher	Program Controlled	
Topology Checking	Yes	
Pinch Tolerance	Please Define	
Generate Pinch on Refresh	No	
Statistics		
Nodes	213003	
Elements	133662	

...

Static Structural (A5)

TABLE 6 Model (A4) > Analysis

Static Structural (A5)		
Solved		
Definition		
Structural		
Static Structural		
Mechanical APDL		
Options		
22, °C		
No		

TABLE 7 Model (A4) > Static Structural (A5) > Analysis Settings

Object Name	Analysis Settings	
State	Fully Defined	
Step Controls		
Number Of Steps	1,	
Current Step Number		

FIGURE 4 Model (A4) > Static Structural (A5) > Figure

...

FIGURE 8 Model (A4) > Static Structural (A5) > Solution (A6) > Equivalent Stress

FIGURE 10 Model (A4) > Static Structural (A5) > Solution (A6) > Equivalent Elastic Strain

FIGURE 11 Model (A4) > Static Structural (A5) > Solution (A6) > Equivalent Elastic Strain

Project

First Saved	Saturday, January 23, 2021
Last Saved	Saturday, January 23, 2021
Product Version	19.2 Release
Save Project Before Solution	No
Save Project After Solution	No

Contents

- <u>Units</u>
- <u>Model (B4)</u>
 - o <u>Geometry</u>
 - Parts
 - <u>Materials</u>
 - <u>16mncr5</u>
 Structural S
 - <u>Structural Steel</u>
 - <u>Coordinate Systems</u>
 - <u>Connections</u>
 - o <u>Mesh</u>
 - Static Structural (B5)
 - Analysis Settings
 - Loads
 - Solution (B6)
 - Solution Information
 - Results
- Material Data
 - o <u>16mncr5</u>

Units

TABLE 1			
Unit System	Metric (mm, kg, N, s, mV, mA) Degrees rad/s Celsius		
Angle	Degrees		
Rotational Velocity	rad/s		
Temperature	Celsius		

Model (B4)

Geometry

TABLE 2 Model (B4) > Geometry			
Object Name Geometry			
State	Fully Defined		
	Definition		
Source	C:\Users\LENOVO\AppData\Local\Temp\WB_LAPTOP- 4VADGGHN_LENOVO_13136_2\unsaved_project_files\dp0\SYS-1\DM\SYS- 1.agdb		
Туре	DesignModeler		
Length Unit	Meters		
Element Control	Program Controlled		
Display Style	Body Color		
	Bounding Box		
Length X	680,09 mm		
Length Y	577,99 mm		
Length Z	192, mm		
Properties			
Volume	2,0243e+007 mm ³		

• • •

157,89 kg 1,
1,
'
Statistics
2
2
127272
74282
None
Update Options
No
Basic Geometry Options
Independent
пиерепиент
Yes
Yes
Yes
Advanced Geometry Options
Yes
Yes
No
Yes
Yes
No
3-D
No
No

TABLE	3	
 -		

Yes

Enclosure and Symmetry Processing

Model (B4) > Geometry > Par	ts
piect Name	Gear 6\Gear 6	Gea

Object Name	Gear 6\Gear 6	Gear 5,7\Gear 5,7
State	Meshed	
Graphics Properties		
Visible	Yes	6

Transparency	Transparency 1			
	Definition			
Suppressed	No			
Stiffness Behavior	Flexib	ole		
Coordinate System	Default Coordir	nate System		
Reference Temperature	By Enviro	nment		
Behavior	Non	е		
	Material			
Assignment	16mn	cr5		
Nonlinear Effects	Yes	;		
Thermal Strain Effects	Yes	;		
	Bounding Box			
Length X	577,99 mm	202,19 mm		
Length Y	577,99 mm	202,19 mm		
Length Z	Z 192, mm			
Properties				
Volume	1,944e+007 mm ³	8,024e+005 mm ³		
Mass	151,63 kg	6,2587 kg		
Centroid X	-344,52 mm	-54,42 mm		
Centroid Y	-147,99 mm	-148,21 mm		
Centroid Z	-96,279 mm	-95,339 mm		
Moment of Inertia Ip1	2,0246e+006 kg·mm ²	29690 kg∙mm²		
Moment of Inertia Ip2	-	29765 kg∙mm²		
Moment of Inertia Ip3	3,1224e+006 kg·mm ²	21451 kg⋅mm ²		
Statistics				
Nodes	86209	41063		
Elements	52384	21898		
Mesh Metric None		e		
CAD Attributes				
Color:175.159.143				

...

FIGURE 1 Model (B4) > Geometry > Figure

FIGURE 2 Model (B4) > Materials > 16mncr5 > Figure

...

Coordinate Systems

TABLE 4 Model (B4) > Coordinate Systems > Coordinate System Object Name Global Coordinate System

Object Name	Giobal Coordinale System	
State	Fully Defined	
De	finition	
Туре	Cartesian	
Coordinate System ID	0,	
Origin		
Origin X	0, mm	
Origin Y	0, mm	
Origin Z	0, mm	
Directional Vectors		
X Axis Data	[1, 0, 0,]	
Y Axis Data	[0, 1, 0,]	
Z Axis Data	[0, 0, 1,]	

Connections

TABLE 5 Model (B4) > Connections		
Object Name	Connections	
State Fully Defined		
Auto Detection		
Generate Automatic Connection On Refresh	Yes	
Transparency		
Enabled	Yes	
Transparency		

...

Mesh

TABLE 6 Model (B4) > Mesh Mesh **Object Name** Solved State Display Display Style Use Geometry Setting Defaults **Physics Preference** Mechanical Element Order **Program Controlled Element Size** Default Sizing **Use Adaptive Sizing** Yes Resolution 7 Mesh Defeaturing Yes **Defeature Size** Default Transition Fast Span Angle Center Coarse Initial Size Seed Assembly **Bounding Box Diagonal** 912,94 mm Average Surface Area 4134,9 mm² Minimum Edge Length 2,0858 mm Quality **Check Mesh Quality** Yes, Errors **Error Limits** Standard Mechanical **Target Quality** Default (0.050000) Smoothing Medium Mesh Metric None Inflation **Use Automatic Inflation** None **Smooth Transition** Inflation Option **Transition Ratio** 0,272 Maximum Layers 5 Growth Rate 1,2 Inflation Algorithm Pre View Advanced Options No Advanced Number of CPUs for Parallel Part Meshing **Program Controlled** Straight Sided Elements No Number of Retries Default (4) Rigid Body Behavior Dimensionally Reduced Triangle Surface Mesher **Program Controlled Topology Checking** Yes **Pinch Tolerance Please Define**

Statistics	
Nodes	127272
Elements	74282

No

Generate Pinch on Refresh

Static Structural (B5)

TABLE 7 Model (B4) > Analysis			
Object Name Static Structural (B			
State	Solved		
Definition			
Physics Type	Structural		
Analysis Type	Static Structural		
Solver Target	Mechanical APDL		
Options			
Environment Temperature	22, °C		
Generate Input Only	No		

TABLE 8					
Model (B4) > Static Structural (B5) > Analysis Settings					
Analysis Settings					

Object Name

•	•	•	

Otata	E. H. Defined					
State Fully Defined						
Number Of Steps	Step Controls					
Number Of Steps 1, Current Step 1						
Number 1,						
Step End Time 1, s						
Auto Time	Program Controlled					
Stepping	-					
	Solver Controls					
Solver Type	Program Controlled					
Weak Springs	Off					
Solver Pivot	Program Controlled					
Checking Large Deflection	Off					
Inertia Relief	Off					
	Rotordynamics Controls					
Coriolis Effect	Off					
Contons Encor	Restart Controls					
Generate Restart						
Points	Program Controlled					
Retain Files After	NI.					
Full Solve	No					
Combine Restart	Program Controlled					
Files	-					
	Nonlinear Controls					
Newton-Raphson	Program Controlled					
Option						
Force Convergence	Program Controlled					
Moment						
Convergence	Program Controlled					
Displacement	ent					
Convergence	Program Controlled					
Rotation	Program Controlled					
Convergence	-					
Line Search	Program Controlled					
Stabilization	Off					
Ctroop	Output Controls					
Stress	Yes					
Strain	Yes					
Nodal Forces	No					
Contact Miscellaneous	No					
General						
Miscellaneous	No					
Store Results At	All Time Points					
	Analysis Data Management					
Solver Files	C:\Users\LENOVO\AppData\Local\Temp\WB_LAPTOP-					
Directory	4VADGGHN_LENOVO_13136_2\unsaved_project_files\dp0\SYS-1\MECH\					
Future Analysis	None					
Scratch Solver						
Files Directory						
Save MAPDL db	No					

•••

Contact Summary	Program Controlled
Delete Unneeded Files	Vec
Nonlinear Solution	No
Solver Units	Active System
Solver Unit System	nmm

TABLE 9 Model (B4) > Static Structural (B5) > Loads **Object Name** Moment Moment 2 Fixed Support State **Fully Defined** Scope Scoping Method **Geometry Selection** Geometry 2 Faces 14 Faces 1 Face Definition Туре Moment Fixed Support Vector Define By Magnitude 2,e+005 N·mm (ramped) Direction Defined Suppressed No Behavior Deformable Advanced **Pinball Region** All

FIGURE 4 Model (B4) > Static Structural (B5) > Moment

TABLE 10 Model (B4) > Static Structural (B5) > Loads					
	Object Name	Fixed Support 2			
	State	Fully Defined			
	Scope				
	Scoping Method	Geometry Selection			
	Geometry	1 Face			
	Definition				
	Туре	Fixed Support			
	Suppressed	No			

Solution (B6)

TABLE 11 Model (B4) > Static Structural (B5) > Solution Object Name Solution (B6)

•••

TABLE 12					
Model (B4) > Static Structural (B5) > Solution (B6) > Solution Information					
	Object Name Solution Information				

• • • • • • • • • • • • • • • • • • • •				
State Solved				
Solution Inform	ation			
Solution Output	Solver Output			
Newton-Raphson Residuals	0			
Identify Element Violations	0			
Update Interval	2,5 s			
Display Points	All			
FE Connection Visibility				
Activate Visibility	Yes			
Display	All FE Connectors			
Draw Connections Attached To	All Nodes			
Line Color	Connection Type			
Visible on Results	No			
Line Thickness	Single			
Display Type	Lines			

TABLE 13

Model (B4) > Static Structural (B5) > Solution (B6) > Results						
Object Name	Total Deformation	Equivalent Elastic Strain	Equivalent Stress			
State		Solved				
	Scope					
Scoping Method		Geometry Select	ion			
Geometry		All Bodies				
		Definition				
Туре	Total Deformation	Equivalent Elastic Strain	Equivalent (von-Mises) Stress			
Ву		Time				
Display Time		Last				
Calculate Time History		Yes				
Identifier						
Suppressed	No					
		Results				
Minimum	0, mm	8,3854e-011 mm/mm	1,9593e-006 MPa			
Maximum	8,5994e-004 mm	2,3792e-005 mm/mm	4,0336 MPa			
Average	2,8203e-005 mm	7,7489e-007 mm/mm	0,12629 MPa			
Minimum Occurs On		Gear 6\Gear 6				
Maximum Occurs On		Gear 5,7\Gear 5	5,7			
		Information				
Time		1, s				
Load Step		1				
Substep	1					
Iteration Number	1					
	Integra	tion Point Results				
Display Option	Averaged					
Average Across Bodies	No					

FIGURE 8 Model (B4) > Static Structural (B5) > Solution (B6) > Total Deformation > Figure

50,00

Material Data

16mncr5

TABLE 17 16mncr5 > Constants

Density7,8e-006 kg mm^-3Coefficient of Thermal Expansion1,1e-005 C^-1

TABLE 18 16mncr5 > Color

RedGreenBlue155,244,255,

TABLE 19 16mncr5 > Tensile Yield Strength

Tensile Yield Strength MPa
590,59

TABLE 2016mncr5 > Tensile Ultimate Strength

Tensile Ultimate Strength MPa 800,

TABLE 2116mncr5 > Isotropic Elasticity

Young's Modulus MPa	Poisson's Ratio	Bulk Modulus MPa	Shear Modulus MPa	Temperature C
2,0224e+005	0,28	1,5321e+005	79000	

Manufacturing Process

After we have finished the required calculations for the gear box, We have designed each part of the gear box and made the required analysis and required assembly Using Solidworks and Ansys to ensure that our design will endure the stress and work properly. Now we have reached the final step which is manufacturing those parts of the gear box, and to do that each part of that gearbox (gears ,pinions, rods and shafts) had gone in same Steps of Manufacturing using Milling Machine process.

Manufacturing Steps Using Mastercam program:

- 1-Import the desired design from Solidworks or another 3D drawing program.
- 2- Choose Milling Machine as the Manufacturing Machine
- 3- Define the suitable Stock size
- 4- Choose the most appropriate toolpath to shape that stock
- 5- Simulate the Manufacturing process in the program
- 6- Generate the NC files and the G code of that manufacturing process
- 7- Using the generated G code in the Milling Machine CNC to Manufacture the desired part.

Note: In this thesis we only show the manufacturing information related to ONE GEAR among many parts in the Gearbox and all related drawings and manufacturing files are collected in one specific file for this project .

Manufacturing Process

The Selected part to manufacture:

The Toolpaths that Used to manufacture that Gear:

1- Face Milling

The tool info.: type = Endmill3Bull	diameter = 62mm	Corner diameter: 1.2mm	flutes = 7
Cutting speed (Cs)=150	Feed per teeth(fpt) = 0.1	6 Feed rate= 1272.32	plunge rate =424.0667

2- Contour

The tool info: type = end mill	diameter =1.5n	nm flutes= 4	
Cutting speed = 150	fpt=0.09	plunge rate = 3819.6	Feed rate = 11458.8

3- Drill (center drill)

The tool info. : type = Ctr Drill	diameter = 3.3	15mm	flutes = 2
Cs = 14.8	fpt = 0.0502	feed ra	ite = 150

4- Drill

The tool info.: type= Drill	diameter = 22	mm flute =2
Cs= 14.8	fpt =0.3505	feed rate = 150

5- Pocket

The tool info.: type= endmill	diameter = 14mm	flutes =	7
Cutting Speed (Cs)=120	Feed per teeth (fpt) = 0	.08	Feed rate = 1527.68
Plunge rate = 509.23	Spindle rate = 2728		

Manufacturing process

The selected part showing in simulation after applying the Manufacturing steps:

The Selected part as in Mastercam program:

Manufacturing process

After we simulated the Manufacturing process, we are going to generate the G codes (NC files) to Manufacture that part using Milling Machine CNC.

Note: the code below is just apart from the original Code file.

The G code for that Gear:

N100 G21
N102 G0 G17 G40 G49 G80 G90
N104 T2 M6
N106 G0 G90 G54 X273.672 Y29.142 A0. S1136 M3
N108 G43 H2 Z25.
N110 Z6.
N112 G1 Z1. F424.1
N114 X256.139 Y055 F1272.3
N116 G3 X256.121 Y094 I.06 J052
N118 G1 X255.604 Y-4.927
N120 X255.012 Y-9.653
N122 X254.658 Y-12.165
N124 X254.266 Y-14.742
N126 X253.836 Y-17.37
N128 X253.368 Y-20.038
N130 X252.862 Y-22.738
N132 X252.318 Y-25.464
N134 X251.736 Y-28.211
N136 X251.115 Y-30.976
N138 X250.457 Y-33.754
N140 X249.76 Y-36.543

Continue with the G code:

N142 X249.025 Y-39.341 N144 X248.251 Y-42.144 N146 X247.439 Y-44.952 N148 X246.589 Y-47.762 N150 X245.701 Y-50.573 N152 X244.774 Y-53.383 N154 X243.809 Y-56.191 N156 X242.806 Y-58.996 N158 X241.765 Y-61.796 N160 X240.686 Y-64.59 N162 X239.57 Y-67.377 N164 X238.415 Y-70.156 N166 X237.223 Y-72.927 N168 X235.994 Y-75.687 N170 X234.727 Y-78.437 N172 X233.423 Y-81.175 N174 X232.082 Y-83.901 N176 X230.704 Y-86.614 N178 X229.29 Y-89.312 N180 X227.84 Y-91.996 N182 X226.353 Y-94.664 N184 X224.83 Y-97.315 N186 X223.272 Y-99.95 N188 X221.678 Y-102.567 N190 X220.049 Y-105.166 N192 X218.384 Y-107.745 N194 X216.685 Y-110.305 N196 X214.952 Y-112.845 N198 X213.185 Y-115.363

N200 X211.383 Y-117.86 N202 X209.548 Y-120.335 N204 X207.68 Y-122.787 N206 X205.779 Y-125.216 N208 X203.845 Y-127.621 N210 X201.879 Y-130.002 N212 X199.88 Y-132.357 N214 X197.85 Y-134.687 N216 X195.789 Y-136.991 N218 X193.697 Y-139.268 N220 X191.575 Y-141.518 N222 X189.422 Y-143.741 N224 X187.239 Y-145.935 N226 X185.027 Y-148.101 N228 X182.786 Y-150.238 N230 X180.516 Y-152.345 N232 X178.218 Y-154.422 N234 X175.892 Y-156.469 N236 X173.538 Y-158.484 N238 X171.158 Y-160.469 N240 X168.751 Y-162.422 N242 X166.319 Y-164.343 N244 X163.86 Y-166.232 N246 X161.377 Y-168.088 N248 X158.868 Y-169.911 N250 X156.336 Y-171.7 N252 X153.78 Y-173.455 N254 X151.2 Y-175.176 N256 X148.598 Y-176.863

Conclusion

reduction gear box with all its components like spur gears, pinions, integral shaft, and radial ball bearings are modeled in a 3D cad tool called SOLIDWORKS. And analysis is done in solid works simulation. The strength of the gear is an important parameter while designing a gear. In this project to compare the theoretical and simulation values of helical gear by varying the face width of the gear. Finally, the design is safe. The product design requires the dimensions and their characteristics of different size. Market requirements stipulated that the product needed to be with different size that can fit the circumstances and conditions where it will be used, therefore.

required product to be with different size that can meet the market demand. Therefore, it is essential to create members of family of same products but with different dimensions and characteristics. Usage of computer in the design of these members as well as, usage of computer in creation of construction of a member of family has considerable effect in shortening the time of product and cost and in increase efficiency and quality of product.

References

1. Ogura, I.; Kotake, M.; Ata, S. Quantitative evaluation of carbon nanomaterial releases during electric heating wire cutting and sawing machine cutting of expanded polystyrene-based composites using thermal carbon analysis. J. Occup. Environ. Hyg. 2018. [CrossRef] 2. Aryafar, A.; Mikaeil, R.; Haghshenas, S.S.; Haghshenas, S.S. Application of metaheuristic algori1thms to optimal clustering of sawing machine vibration. *Measurement* **2018**, *124*, 20–31. [CrossRef] strategies for parallel robot instruction. *IEEE Trans. Educ.* 2013, 56, 268–273. [CrossRef] 3. Li, C.; Ji, S.M.; Tan, D.P. Softness abrasive flow method oriented to tiny scale mold structural surface. Int. J. Adv. Manuf. Technol. 2012, 61, 975–987. [CrossRef] 4. Han, D.; Zhao, N.; Shi, P. Gear fault feature extraction and diagnosis method under differentload excitation based on EMD, PSO-SVM and fractal box dimension. J. Mech. Sci. Technol. 2019, 33, 487-494. [CrossRef] 5. Zhang, L.B.; Lv, H.P.; Tan, D.P.; Xu, F.; Chen, J.L.; Bao, G.J.; Cai, S.B. An adaptive quantum genetic algorithm for task sequence planning of complex assembly systems. *Electron. Lett.* **2018**, *54*, 870–871. [CrossRef] 6. Tan, D.P.; Chen, S.T.; Bao, G.I.; Zhang, L.B. An embedded lightweight GUI component library and the ergonomics optimization method for industry process monitoring. Front. Inf. Technol. Electron. Eng. 2018, 19, 604–625. [CrossRef] 7. He, C.R.; Qin, W.B.B.; Ozay, N.; Orosz, G. Optimal gear shift schedule design for automated vehicles: Hybrid system based analytical approach. IEEE Trans. Control Syst. Technol. 2018, 26, 2078–2090. [CrossRef] 8. Ge, J.Q.; Tan, D.P.; Ji, S.M. A gas-liquid-solid three-phase abrasive flow processing method based on bubble collapsing. Int. J. Adv. Manuf. Technol. 2018, 95, 1069–1085. [CrossRef]

9. Zhang, L.; Yuan, Z.; Tan, D.; Huang, Y. An Improved abrasive flow processing method for complex geometric

surfaces of titanium alloy artificial joints. Appl. Sci. 2018, 28, 1037. [CrossRef]

10. Tan, D.P.; Zhang, L.B. A WP-based nonlinear vibration sensing method for invisible liquid steel slag detection.

Sens. Actuators B Chem. 2014, 202, 1257–1269. [CrossRef]

11. Zeng, X.; Ji, S.M.; Jin, M.S.; Tan, D.P.; Ge, J.Q. Research on dynamic characteristic of softness consolidation

abrasives in machining process. *Int. J. Adv. Manuf. Technol.* **2016**, *82*, 1115–1125. [CrossRef] 12. Tan, D.P.; Ji, S.M.; Fu, Y.Z. An improved soft abrasive flow finishing method based onfluid collision theory.

Int. J. Adv. Manuf. Technol. 2016, 85, 1261–1274. [CrossRef]

13. Xu, Z.F.; Shao, R.P. Forecast of sound pressure level of gear systems and fault diagnosis based on acoustics.

Comput. Meas. Control 2009, 17, 1688–1691.

14. Ji, S.M.; Weng, X.X.; Tan, D.P. Analytical method of softness abrasive two-phase flow fieldbased on 2D

model of LSM. Acta Phys. Sin. 2012, 61, 188–198.

15. Zeng, X.; Ji, S.M.; Jin, M.S.; Tan, D.P.; Li, J.H.; Zeng, W.T. Investigation on machining characteristic of

pneumatic wheel based on softness consolidation abrasives. *Int. J. Precis. Eng. Manuf.* **2014**, *15*, 2031–2039.

[CrossRef]

16. Tan, D.P.; Ji, S.M.; Li, P.Y.; Pan, X.H. Development of vibration style ladle slag detection method and the key

technologies. Sci. China Technol. Sci. 2010, 53, 2378-2387. [CrossRef]

17. Gu, Y.Z.; Zuo, D.W.; Xu, W.M. A modal analysis and optimization of physiotherapy appliance bed structure.

Mach. Build. Autom. 2009, 1, 36–39.

18. Jiang, L.; Xiang, D.; Mou, P.; Shen, Y.H. Study of gearbox's robust optimization design. *Mach. Des. Manuf.*

2018, *1*, 14–16.